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ABSTRACT

IMSL Corporation sells a widely used and respected package of mathematical
and statistical computer subroutines written in the FORTRAN language. While
engineers, mathematicians and others who work regularly with computation are
familiar with the usefulness of the subroutines, most medical researchers are
neither aware of how the package could be useful to them nor knowledgeable
enough in FORTRAN to be able to write programs to call the routines. This
report gives examples which illustrate the applicability of IMSL subroutines
to research in physiology and biomechanics, and shows how to write simple
FORTRAN programs to define variables, read data from a file, call the IMSL
subroutines, and store or display results. Increased usage of IMSL software by
medical researchers can lead to more sophisticated and quantitative treatment

of data, and improve the overall quality of research.
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INTRODUCTION 0

gl

X

IMSL Incorporated sells a computer software product called the IMSL X

.‘C

Library which is a comprehensive collection of over 600 mathematical and $$
2

statistical FORTRAN subroutines. Since its creation in 1970 IMSL has become 0
internationally recognized by government, industry and academia as a a1
comprehensive, reliable resource in the field of numerical computing. §§
Lt

l.

There are three sub-libraries within the IMSL software package: "

o

MATH/LIBRARY - general applied mathematics é
STAT/LIBRARY - statistics * X

O

SFUN/LIBRARY - special functions !!

Y

.\

To use any of the routines, a program must be written in FORTRAN to define :5
variables, read data from a computer fife, call the IMSL subroutines, and e
4

store or display results. The purpose of this report is to show how simple :g
4

FORTRAN programs can be written to access the IMSL library. Illustrative

e L

examples are provided of applications to research in physiology and

biomechanics. >3
An alternative product to the IMSL library, called PROTRAN, produced by
the same company, may be of interest to some users. It allows those with no "
programming knowledge to solve mathematical and statistical problems. The :,
system is basically a program which converts a set of relatively simple é
commands provided by the user into FORTRAN computer code which calls the ]
appropriate IMSL subroutines. While the system may prove useful in an F
environment where users are unfamiliar with programming, there are some E:E
disadvantages to PROTRAN over the regular IMSL library. PROTRAN requires o
»
4
.
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KR considerable computer memory and computing time to pre-process the simplified

commands, and is therefore limited to larger computers. Unlike the standard

" library, it will not operate on an IBM PC compatible machine, and IMSL has no
%g plans to develop a PROTRAN version for the PC in the near future. The standard
i

Zﬁ library has a more comprehensive set of subroutines and allows for more

control by the user. Also, while some knowledge of FORTRAN is useful for
W purposes other than accessing IMSL, the PROTRAN syntax which the user must
" learn only has application to the specific software package.

Cost of the IMSL library depends on what computer it is used with. The

;Bﬁ price for the package on a VAX 780 is $3500, while for a PC it is $2050 with
%§, access to the subroutine programming code or $1500 without access. A license
‘: for the life of a VAX 780 computer is $17,000 with a $700 per year maintenance
;:; and update charge. A site license for up to 100 copies of the program for PC
a: compatibles is $4000 each for the math, stat, and special function sub-

libraries, with a $1000 maintenance/update fee per sub-library. The cost for

o PROTRAN is similar to that of the standard library.
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METHODOLOGY e
\k
v‘...
Locating the appropriate subroutine gﬁ
o
&
‘l
The are 3 manuals each for the MATH/LIBRARY and the STAT/LIBRARY, and 1 :Ji
for the SFUN/LIBRARY. At the end of each set of manuals are three indices of ol%
ol
the subroutines organized as follows: e
'
1. KWIC index - by keyword %ﬁ
2. GAMS index - by major subject area "
0
3. Alphabetical index E ;
.‘U
A sample page from each of the three indices can be found in Appendix 1. Es
O
&
Subroutine documentation éq
.
Each routine is described concisely, and at least one example of its use Z&ﬁ
is presented, with sample input and output. Algorithms are described, and :%l
references provided. Appendix 2 contains documentation from the subroutines -
used in the examples that follow. &:
aﬂ
K
Writing programs to call IMSL subroutines o
}: v
phy
2
The IMSL subroutines are written in FORTRAN, and are thus most easily 2
e
accessed by FORTRAN programs which call them. Some computer operating systems v
e
allow the subroutines to be called by programs written in other languages. The Ef
method of doing so is peculiar to each operating system. :j
Very simple FORTRAN programs can be written to read data from a file, .’
%
v {
3 R
)
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store the information in computer memory, call IMSL subroutines to perform
mathematical or statistical manipulations and write the results out to the

terminal screen or a file.

2: In most computers, creation of a program consists of entering a mode in
R
ﬁf which text can be stored in a file, typing in the program steps, saving the
» file, and instructing the computer to compile and |link the program, which

'.':
;f converts the program to machine language that the computer can follow directly

2 and allocates the appropriate computer resources. The program is then ready to
- run on a specified data file. A potential user must find out the instructions

a4y

ﬂ needed on his particular computer to store, compile, link and run a FORTRAN

't;

D
?ﬁ: program.
s'!.

,;E‘: Some FORTRAN fundamentals

E)

i Variables

’ Numbers are stored under variable names. Values can be assigned to a

}‘ variable directly in the program, from the terminal keyboard, or read from a

BN

g‘ file.

. Examples:

¢

. Assigning values to variables:

o A=3.5

194

- B=14.7

'E Reading values from the terminal keyboard:

‘’ 3
N PRINTs,"ENTER SUBJECTS HEIGHT IN METERS" .
. READ# ,HEIGHT

Cd

2’

g

" y
~ ']
5 \
q 4
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Arrays

An array is a storage place for numbers. It can have one, two or more

dimensions. Each array must be deciared at the beginning of the program.

Examples:
REAL A,VARS(8),VALUES(2,6)

A is a variable which can hold one numerical value at a time. VARS is a
one-dimensional array of length 8 that can store 8 numbers. The contents of
VARS might be:

10.2 13.5 14.8 34.7 89.4 67.2 78.2 36.8
VALUES is a two-dimensional array with 2 rows and 6 columns, that can

store 2 x 6§ = 12 numbers. The contents of VALUES might be:

56.7 19.2 24.0 13.2 45.8 95.1

24.5 12.9 97.3 64.9 32.9 74.5
Individual elements within an array are specified by numbers within
parentheses following the array name. For example VARS(4) is the fourth
element of array VARS and has the value 34.7. VALUES(2,5) equals 32.9 since

the element in row two, column five of VALUES is specified.
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' Format Statements "
]
The format statement specifies how numbers are to be read from or written %
{ to a file. The most commonly used format is the F type.
J *
\ . '
: Example: 3
: READ(1,20)A,B A
20 FORMAT (F4.1,F5.2) X
b
; 3
The first line assigns to variables A and B numbers it reads from file 1 o
according to the format statement on the line labelled 20, which specifies
that the two numbers will be read from the current line in the file. The first
iy
number will consist of the first 4 characters from the current line in the qg
1 file, with a decimal point placed to the left of the single rightmost digit. Y
The second number will contain the next 5 characters from the current file *:
line, with a decimal point to the left of the rightmost 2 digits. When a file 3
is opened, the current file line is the first line in the file. After each vl
read statement, the current file line is incremented by one. E‘
"
o
[,
D0_Loops ﬁ
In a DO Loop, a set of instructions is used repeatedly for a specified ;;
!
number of times. 4
)
Example: 4 ﬁ:
D0 30 I=1,100 ;Q
READ (1,20) KILOMETERS (1) ™
]
30 MILES(I)=KILOMETERS(I)s.6214 7
o
o,
N,
g
The 30 after the word D0’ indicates the label of the last |ine of the by
loop. 1 is the loop counter whose value is incremented by 1 at the end of each S,
‘l
6 3
’
o~
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-------

This loop reads elements 1 through 100 of array

pass through the loop.

KILOMETERS from a file and assigns corresponding values to elements 1 through
100 of array MILES.

Integers and real numbers

Integers are whole numbers used for counting. They cannot have fractional

parts or decimal points. Examples of integers are 1, 3, 11, 506, and 10786.

" MMM

Real numbers can express gradations between whole numbers and have decimal

points. Exampies of real numbers are 13.5, 22., 1050.525 and 0.148.

«

It must be specified in FORTRAN which variable names refer to integers and %

which to real numbers. The specification can be’ in two ways. The first §

' involves the first letter of the variable name. If the name starts with k
; I,J,K,L,Mor N, the variable is taken to be an integer unless specified ;
otherwise. A variable name with any other starting letter is assumed to be a ;

real number unless specified otherwise. Variables specifically declared as

T

integers or real numbers override the starting letter convention.

Example of variable declaration:
INTEGER COUNT, FLAG
REAL KILOGRAMS, MINUTES
Thus the variables COUNT and FLAG are integers even though they start with

NPE

letters other than i,j,k,I,m or n while KILOGRAMS and MINUTES are real numbers

even though they start with letters other than i through n.

I A AFAFRFAS AT BT BV S S A NP N N M AT VY LN T A Y TR R /L L N T
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Calling subroutines

A subroutine is a program segment that can be called to perform a task. An

example of a subroutine call is:

CALL AREAC(R,AREA)

This particular subroutine calculates the area of a circle when a radius
is provided. Note that R is a variable that must be input, while AREA is
calculated by the subroutine.

Example:
RAD=5.
CALL AREAC(RAD,A)
PRINTs, A

The area of the circle of radius 5.0 will be printed. Note that names of
the arguments in the subroutine call don’t matter, but order and type of the
arguments must be as specified. Actual numbers as opposed to variable names

may be used directly in the subroutine call if desired:

CALL AREAC(5.0,A)

Single and double precision

Each computer has a certain number of digits past the decimal point to
which a real number may be considered accurate. Smaller computers usually have
fewer digits of precision than do larger computers. Single precision is

adequate for most mathematical operations. Yet sometimes, particularly where a

by 1 3 b DAL BT TR A Rt A R AT A R A R i
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lot of repetitive mathematical operations may magnify errors, the standard
degree of precision is not adequate. When it isn’t, computers can be asked to
define rea! numbers in double precision, where twice the normal computer
memory is allocated per number stored, increasing accuracy considerably.
Personal computers, in which standard numerical precision is considerably less
than in mainframes, would more often require specification of double
precision.

An example of defining variables as double precision on the VAX 780

computer:

DOUBLE PRECISION HEIGHT, WEIGHT, VARS(100)

Most IMSL subroutines come in both single and double precision versions.
In such cases, on the description page of the subroutine, the single and
double precision titles are separated by a slash, with the double precision

name coming second and beginning with a "D", as in:

LFSQH/DLFSQH

The following is an example of a call to a single precision subroutine:

call LFSQH( N, FAC, LDFAC, NCODA, B, X )

For double precision, real numbers must be defined as double precision at

the start of the program:

DOUBLE PRECISION FAC, LDFAC, B, X

ateate ot N4 U MO M W i 0L WA N o,
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ia The double precision version of the subroutine is then called when needed:

; |

. CALL DLFSQH( N, FAC, LDFAC, NCODA, B, X )

k.

g

i s Note - only the real numbers, and not the integers, are defined as

? t

, double precision. Integers are used for counting, and have no decimal point

¥,

3 d

é (e.g. 1, 12, 4055). By default in FORTRAN all variable names beginning with I,

k)

ﬁ J, K, L, Mor N specify integers. Variable names beginning with any other ]
letter specify real numbers, which have decimal points (e.g. 20.25, .0034, -

3 10000.), and can theoretically express infinite gradation between whole !

1} t

| numbers. X
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An exar>le of using mathematical subroutines in biomechanics

Figure 1 is a plot of torque produced throughout a range of human joint
motion on a dynamometer. Actual data points are indicated by the squares,
which are joined by straight lines. Figure 2 shows the area under each
straight line segment divided into a rectangle and 2 triangle. Using standard
formulas to get the areas of all the rectangles and triangles, the total area
under the curve adds up to 27,615 units.

A problem with the above approach is that joining the data points by
straight lines does not adequately represent the smooth gradation of human
torque capability over a range of joint motion. An IMSL subroutine can be used
to draw a smooth curve through the data points. The following program reads
the torque and joint angle corresponding to each point on the graph, calls
IMSL cubic spline smoothing subroutines and writes a set of points
corresponding to the smooth curve to a new file. Another IMSL subroutine
calculates the area under the curve.The raw and smoothed data points can be
plotted with any standard plotting package or by another IMSL routine using
line-printer graphics.

Figure 3 shows the ;;w data points, and the cubic spline derived smooth
curve plotted from the x and y coordinates in the output file. The automatic
spline subroutine used in the program chooses the degree of smoothing based on
statistical considerations. Note that the points are not necessarily
intersected by the smoothing curve. The area calculated under the smooth curve
is not the same as that calculated using rectangles and triangles. With other
data distribution shapes, the discrepancy would be even greater. The smooth
curve is more representative of most natural phenomena than is the series of

line segments.
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Figure 1 - Raw data points connected by straight lines
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It should be noted that program |ine numbers have been placed on the left

to facilitate discussion and are not to be typed in as part of the FORTRAN

program. A line-by-line discussion of the program follows the listing.

REAL X(13),Y(13),XNEW(121),YNEW(121) ,BREAK (13) ,CSCOEF (4,13)
OPEN(1,FILE="POINTS.DAT,STATUS="0LD")
OPEN(2, FILE="SMOOTHED .DAT? , STATUS="NEW’)
D0 10 I=1,13
10 READ(1,20)X(I),Y(I)
20 FORMAT (2F6.2)
CALL CSSCV(13,X,Y,2,BREAK, CSCOEF)
AREA=CSITG(60.,180. ,12,BREAK, CSCOEF)
WRITE(2,30) AREA
30 FORMAT(’AREA = ’,F7.0)
ICOUNT=0
DO 40 IANGLE=60,180
ICOUNT=ICOUNT+1
XNEW (ICOUNT) =IANGLE
YNEW (ICOUNT) =CSVAL (XNEW(I) , 12, BREAK, CSCOEF)
40 WRITE(2,20)XNEW(I) , YNEW(I)
CLOSE(1)
CLOSE(2)
STOP
END

el
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explanation

Declaration is made of the arrays of real numbers. X and Y are
the abscissae and ordinates of the raw data points. Both are one
dimensional arrays dimensioned to length 13, since there are 13 raw
data points. XNEW and YNEW are arrays set up to hold points along a
smooth curve calculated with the cubic spline. Both are one
dimensional arrays of length 121 to hold abscissae and ordinates
corresponding to the range of joint motion between 60 and 180 degrees
at one degree increments. The arrays BREAK and CSCOEF are required by
the IMSL subroutines used in the program. Partial documentation from
the IMSL manual on cubic spline subroutines CSSCV, CSITG and CSVAL is
shown in figure 4. Complete documentation on all subroutines referred
to in this report can be found in appendix 2. It can be seen that
when the subroutine is called, there is a list of arguments in
parenthesis after the subroutine name.

All files from which data is read or to which data is written
must be opened. This open statement assigns number 1 to the pre-
existing or ’old’ input file called POINTS.DAT. Any further reference
to the file in the program is by its number.

The ’new’ file created by the program, which contains the
smoothed data points, is assigned number 2.

Lines 4 and 5 comprise a DO loop in which successive elements of
arrays X and Y are read from file 1 according to the format statement
on the line labelled 20.

The cubic spline subroutine is called. Values for the arguments

are assigned according to the instructions in figure 4. After the

. LN ALY, PO T M 5y e
*“““) g (3 .‘|. *' l"
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: CSSCV/DCSSCYV  (Single/Double precision) v
i1 i
: Purpose: Compute a smooth cubic spline approximation to moisy '
data using cross-validation to estimate the smoothing .
parameter. .
: Usage: CALL CSSCV (NDATA, XDATA. FDATA, IEQUAL, BREAK, CSCOEF) »
] L)
Arguments h

NDATA - Number of data points. (Iaput)

! NDATA sust be at least 4. ),
: XDATA - Array of length NDATA containing the data point :
¥ abscissas. (Input) B
L XDATA must be distinct. !
X FDATA - Array of length NDATA containing the data point ,
. ordipates. (Input)

IEQUAL - A flag alerting the subdbroutine that the data is ’
: equally spaced. (Input) Iy
« If NDATA is small (less than about 20) then IQUEAL should ;
X - be set to 2. k
1 If IEQUAL is ! then equal spacing is assumed and the
{ algorithm is more efficient; otberwise, unequal spacing o

for the XDATA vector is assumed

BREAK - Array of length NDATA containing the breakpoints
} for the piecewise cubic represeptation. (Output) O

CSCOEF - Matrix of size 4 by NDATA coptaining the local g
: coefficients of the cubic pieces (Dutput) :
' !
3 ¢
2 CSITG/DCSITG  (Single/Double precision) ‘
: Purpose: Evaluate the integral of a cubic spline. .i
L
e Usage: CSITG(A. B. NINTV, BREAK, CSCOEF) .
. ]
i Arguments .

A - Lower limit of integration. (Imput)
B - Upper limit of integration  (Imput)

s NINTV - Number of polynomial pieces. (Izput) |9'

! BREAK - Array of length NINTV+1 containing the breakpoints

£ for the piecewise cubic represectation. (laput) :

BREAK must be strictly inmcreasing .

g CSCOEF - Matrix of size 4 by NINTV+1 containing the local .

coefficients of the cubic pieces. (Ipput) '

CSITG .- Value of the integral of the spline from A to B R

" (Output) :

\ —_— »
)

CSVAL/DCSVAL  (Single/Double precision) (

Y Purpose: Evaluate a cubic spline. .
Usage: CSVAL(X, NINTV, BREAK. CSCOEF) ’
, : Arguments
t’ X - Point at which the splime is to be evaluated. . by
(1nput)
' NINTV - Number of polynomial pieces. (Input)
: BREAK - Array of leagth NINTV+l containing the breakpoints ,
for the piecewise cubic representation. (1aput) -
BREAK must be strictly increasing )
i CSCOEF - Matrix of size 4 by NINTV+i containing the local R
: coefficients of the cubic pieces. (Imput) L
CSVAL - Value of the polymomial at X. (Output)
[}
I. .
‘," Figure 4 - Arguments for subroutines CSSCV, CSITG and CSVAL
| d
t
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»
g
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subroutine call, arrays BREAK and CSCOEF have values specifying cubic
spline smoothing equations for each interval between the raw data
points.

Area is calculated by the subroutine CSITG. Arrays BREAK and
CSCOEF already contain values assigned to them by CSSCV on the
previous line.

The area is written to file 2 according to the format statement
on the line labelled 30.

The array element counter ICOUNT is initialized to O.

This group of lines is a DO loop whose instructions are repeated
as the variable IANGLE assumes successive values between 60 and 180.
The elements of XNEW are assigned real number values corresponding to
the integer values of IANGLE. The elements of Y are assigned values
by subroutine CSVAL which calculates them using the smoothing
equation coefficients determined by subroutine CSSCV. Vzlues of XNEW
and YNEW are written to file 2 according to the format indicated on
the line labelled 20.

Files 1 and 2 are closed.

Standard program ending.

Sometimes the Y values corresponding to abscissae between actual data
points are needed. Figure 5 compares Y values chosen by straight line and
cubic spline interpolation. It can be seen that there can be considerable
discrepancy between the two. Where it is known that a smooth curve is more
representative of a phenomenon, spline interpolation is preferable.

In some cases automatic smoothing may not be appropriate. An example would

be where the user would like the curve to pass through all the data points. In
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cases where the user would like to decide on ¢the degree of smoothing,

subroutine CSSMH should be used instead of subroutime CSSCV. The arguments for

CSSMH are shown in figure 6. It can be seen that twe new arguments are needed, a,
WEICHT and SMPAR. In Figure 7, the smallest dashes show the automatically g
smoothed curve using CSSCV, the mid-size dashes show a less smooth curve which §
stays close to all raw data points, and the large dashes show an excessively . q

Il

smooth curve, for which a high value for SMPAR was specified. Modifications to
the program for user specified degree of smoothing include declaration, 0

dimensioning and assigning values to array WEIGHT, reading a value for SMPAR,

and calling subroutine CSSMH instead of CSSCV. All 13 elements of WEIGHT were ?ﬂ
\&,
arbitrarily assigned values of 25. g)
3

REAL WEIGHT(13)

DATA WEIGHT/13#25./

N

PRINT+, ’ENTER THE SMOOTHING FACTOR:’
READs , SMPAR
CALL CSSMH(13,X,Y,WEIGHT,SMPAR,BREAK , CSCOEF)

N TR G R I A N T
AW N ;'.'f'.'.' XNAAA NS

{l

e s e » WA -y » . -y
: "._’._’.,".f PN "1’.,’.,".,’-,’-.' s".':?. S

The rest of the program is as before. The ’PRINTs,’ and ’READs,’

instructions allow writing a question to the terminal screen and reading the
answer from the keyboard. A graphics package or routine can be used to
visually check if values chosen for WEIGHT and SMPAR provide the desired

degree of smoothing.

20
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CSSMH / DCSSMH (Single/Double precision)
Purpose:

Usage:

Arguments
NDATA -

XDATA -

FDATA -

WEIGHT -

SMPAR -

BREAK -

CSCOEF -

PR P A P P
N A e . e
o WAL MMM NN

(SN

Compute a smooth cubic spline approximation to
noisy data.

CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK,
CSCOEF)

Number of data points. (Inmput)

NDATA must be at least 2.

Array of length NDATA containing the data point
abscissas. (Input)

XDATA must be distinct.

Array of length NDATA containing the data point
ordinates. (Input)

Array of length NDATA containing estimates of the
standard deviations of FDATA. (Input)

All elements of WEIGHT must be positive.

A nonnegative number which controls the smoothing.
(Input)

The spline function S returned is such that

the sur from I=1 to NDATA of

( (S(XDATA(I))~FDATA(I))/WEIGHT(I) )==»2

is less than or equal to SMPAR. It is recommended that
SMPAR lie in the confidence interval of this sum, i.e.,

NDATA-SQRT(2+«NDATA) .LE. SMPAR .LE. NDATA+SQRT(2+«NDATA).

Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)
Matrix of size 4 by NDATA containing the local
coefficients of the cubic pieces. (Output)

Figure 6 - Arguments for subroutine CSSMH
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An example of using statistical subroutines in physiology

Standard |inear regression derives a straight |ine equation to fit data
such that the sum of squared deviations between the observed and predicted
data points is minimized. One problem with the procedure is that an outlying
point has a disproportionate amount of weight. A form of regression which is
less affected by aberrant data points is one in which the sum of absolute
values rather than the squared values of differences between observed and
predicted points is minimized. The BMDP and SPSS statistical packages do not
contain routines which perform such regression, while IMSL does. Figure 8
shows the arguments for subroutine RLINE and RLAV which respectively perform
least squares and least absolute values regression.

The points plotted in figure 9 were generated by a program using a
subroutine to produce uniform pseudo-random deviations about the solid
straight line of slope 1.0 and intercept 0.0. The dashed lines of best fit
were derived by calls to the subroutines using the least squares and least
absolute value regression methods. In figure 10, a high outiier was
substituted for the lefﬁrost point of the random distribution about the Y=X
line serving to increase the intercept and decrease the slope of a fitted
line. It can be seen that the outlier had much greater effect on the slope and
intercept obtained by the ieast squares method than on the slope and intercept
determined by the least absolute values method, indicating that the latter
method may be preferable for fitting a straight line to some data
distributions. The following are essential parts of the program used to call

the regression subroutines. Line-by-line notation follows.
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[
4 RLINE/DRLINE  (Single/Double precision)
. Purpose Fit a line to & set of dats points using least squares
1,
:,: Usage CALL RLINE (NOBS, XDATA. YDATA. 30, B1, STAT)
'y
L::: Arguments
W NOBS - Nusber of obeervations (Imput)
i XDATA - Vector of leagtid NOBS comtaimiag the x values. (laput)
YOATA - Vector of length MOBS comtaining the y values (Imput)
s » - Estisated intercept of the fitted lime  (Output)
! B - Estimated slope of the fitted lime. (Output)
’,: STAT - Vector of langth 12 coataiaing the statistics described
W, below. (Output)
Yty 1 STAT(I)
‘", 1 Neas of IDATA
oy 2 Mean of YDATA
3 Sample variance of IDATA
oy 4 Sasple variance of YDATA
e L] Correlation
N [ Estisated standard error of 30
) ) 7 Estimated standard error of B1
‘ZQ‘ 8 Degrees of freedos for regression
oy ® Sus 0f squares for regression
e 10 Degrees of freedom for error
11 Sua of squares for error
“ 12 Nusber of (x.y) points contaiaing NaN
L (not a number) as either the x or y value
o I e
vt
:;:i RLAV/DRLAV  (Single/Double precision)
by
"-‘. Purpose Fit a multiple linear regression model using the least
) absolute values criterios.
Iy
‘;‘ Usage CALL RLAV (NDBS, NCOL. X. LDX. INTCEP. IIND. INDIND,
::. IASP. B. IRANK, SAE. ITER. NRMISS)
o
t:;: Arguments
K NOBS - Number of observations (Imput)
NCOL - Nusber of columns 33 X  (Imput)
[, X - NOBS by NCOL satrix contaipiag the data  (Imput)
‘:'I LoX - Leading dimepsion of X exactly as epecified 1n the
W disension statewent 1o the calling progras  (Imput)
K INTCEP - Intercept option. (lmput)
Y INTCEP Action
1Y 0 An intercept 18 not in the model
L) 1 A intercept 1s in the model
IIND - Independent variable optioz  (Ilaput)
[ The absolute value of IIND 1s the pumber of independest
N (explanatory) variables The sign of IIND specifies the
' : following options
g LIND Meaniag
'y LT 0 The data for the -IIND independent variasbles are
[y given 1o the first -IIND columns of X
Y GT O Tbe data for the IIND independent variables are
1n the columns of X whose column numbers are
giver by the slements of INDIND
EQ O There are no independent variabdbles
‘\: The regressors are the constant regressor (if INICEP = 1)
B>, and the independent variadles
A INDIND - Ipdex vector of length IIND containing the coluan sumbers
:' of X that are the independent (explaaatory) variables
> (Input. 3¢ 1IND 1s positive)
ol 1£ 1IND 1e Begative. INDIND 318 mot referenced asd can be
a vector of length cne
N IRSP - Colums susber IRSP of X cootaids tke data for the
) response (dependent) variable  (laput)

B - Vector of length INTCEP + IABS(IIND) comtaining 8 LAV
solutiop for the regression coefficients  (Dutput)
[ If INTCEP = §. B(1) costaias the intercept estimate
‘l B(INTCEP+1) contains the coefficient estisate for the
1-tb 1odependent variabdle

b
IRANK - Rank of the matrix of regressors  (Output)
If IRANK 18 less than INTCEP + IABS(IIND). linear
: dependence of tde regressors was declared
5 SAE - Sum of tde absolute values of the errors  (Output)
) ITER - Nusber of iteratioos perforsed  (Dutput)
" s KRMISS - Number of rows of data cootaiping NaM (mot & pumber:
’l f0or tBe dependent or independent variadbies  (Output}
B, ¢ a row of data containe Nad for any of these variati.es
that row 1s excluded from the computat:ions :
> Figure 8 - Arguments for subroutines RLINE and RLAV
24
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1 REAL X(10),Y(10),STAT(12),ARREI(10,2),B(2)

2 CALL RLINE(10,X,Y,B0,B1,STAT)
3 00 15 I=1,10 'é
4 ARREI(I,1)=X(I)
5 15 ARREI(I,2)=Y(I) P
6 CALL RLAV(10,2,ARREI,10,1,-1,2,B,IRANK,SAE, ITER,NRMISS) é
3
!
line explanation g
1 Arrays X and Y contain the data point abscissae and ordinates. !
Array STAT holds statistical output from subroutine RLINE. Array ‘;
ARREI is a two dimensional array or matrix created by the program to :}
satisfy the input requirements of subroutine RLAV. Array B stores
results from RLAV. ~
2 Subroutine RLINE is called to perform least squares linear ;:
regression. After the line is executed BO contains the intercept and :ﬁ
Bl the slope of the fitted line. STAT(5) contains the correlation E:
coefficient. Information can be output to a file or the terminal %
screen. j
3-5 DO Loop 15 is used to write X and Y data to an array named ARREI :l
to satisfy the input requirements of subroutine RLAV. :
6 The subroutine is called as specified in the instructions. After >
the line is executed, B(1) contains the intercept and B(2) contains ;.
p

the slope of the fitted line.
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Sort a real array by
Sort an integer array by
vector having maximum
vector having minimum
Sort a real array by
Sort an integer array by
single. .. Sum the
.. .precision scalar to the
.. .an extended-precision
.. .using 3 double-precision
..and the double-precision
using a double-precision
using a double-precision
.. .equations using an
.. .function using a globally
accumulator in. ..
vector. x = x + a....
storage mode.
in band storage. ..
alpha®x*trans(y) is
after a rank-one matrix is
Compute the
Integrate a function with
Sort a real array by
Sort an integer array by
Sort a real array by
Sort an integer array by
Hessian of an
.. .tensor-product spline
differences.
forward. . .
differences and a. ..
differences and. ..
functions in N. ..

.. .weighted Chebyshev
Store a double precision
...B-spline east squares
...3 smooth cubic spline
...a smooth cubic spline
...and a finite-difference
Compute a least squares

.. .the least squares spline
.. .the elements of an
Sort a real

Sort an integer

Sort 2 real

Sort an integer

Sort a real

Sort an integer

Sort a real

Sort an integer

M N O N U A T RO “ad ¥,

Keyword in Context Index

absolute value and return the. ..

absolute value and return the. ..

absolute value. ...a single-precision
absolute value. ...a single-precision
absolute value.

absolute value.

absolute values of the components of a
accumulator in extended precision.
accumulator with a double precision. . .
accumulator, which is set to the result. ..
accumulator, which is set to the result. ..
accumulator. ...a + conjg{x)*y.
accumulator. ...product. a + x*y.
Adams-Mouliton or Gear method.

adaptive scheme based on...

Add a double precision scalar to the

Add a scalar to each component of a

Add two band matrices. both in band
Add two complex band matrices. both
added. .. .after the rank-one matrix
added. .. .positive definite matrix
Akima cubic spline interpolant.
algebraic-logarithmic singularities.
algebraic value and return the. ..
algebraic value and return the. ..
algebraic value.

algebraic value.

analytic function. .. .user-supplied
approximant using least squares.. ..
Approximate the gradient using central
Approximate the gradient using
Approximate the Hessian using forward
Approximate the Hessian using forward
Approximate the Jacobian of M
approximation to a continuous function. ..
approximation to an extended-precision. ..
approximation to given data.
approximation to noisy data using. ..
approximation to noisy data.
approximation to the Jacobian
approximation with user-supplied basis. ..
approximation. and return the B-spline. .
array as specified by a permutation.

array by absolute value and return the. ..
array by absolute value and return the. ..
array by absolute vaiue.

array by absolute value

array by algebraic value and return the. ..
array by algebraic value and return the. ..
array by algebraic value.

array by aigebraic value

periodic two-dimensional array .. .coefficients of a compiex
periodic two-dimensional array ...transform of a complex
IMSL, Inc. MATH/LIBRARY

KWIC Index

SVREP 1077 - (M)
SVIBP 1080 - (i)
ISAMAX 1031 - (i)
ISAMIN 1031 - (1)
SVREN 1076 - ()
SVIBN 1079 - (W)
SASUN 1030 - (H1)
DQADD 1035 - (1)
DQINI 1035 - ()
SDDOTI 1029 - (W)
SDDOTA 1029 - (NI}
CZCDOT 1028 - (W)
SDSDOT 1028 - (1)
IVPAG 640 - (1)
QDAG 569 - (W)
DQADD 1035 - (1)
SADD 1027 - ()
ARBRB 1000 - (M)
ACBCB 1002 - (1)
LUPGR  263- (1}
LPCH  211- (1)
CSAKM 420 (W)
QDAWS  589- (1)
SVRGP 1071 - (W)
SVIGP 1074 - (iil)
SVRGY 1069 - (1)
SVIGN 1073- (W)
CHHES 927 - (W)
BSLS2  S41- (i)
COGRD 909 - (i)
FDGRD 911 - (W)
GDHES 917- (W)
FDHES 914 - (i)
FDJAC  920- (m)
RATCH 557 - (i)
DGSTO 1035 - (W}
BSVLS 536 - (W)
csscv  554- ()
CSSMH 550 - (W)
NEQNF  T76- (W)
FNLSQ  527- (W)
BSLSQ  532- (i)
PERMU 1065 - (NI}
SVRBP 1077 - (N}
SVIBP 1080 - (W)
SVRBN 1076 - (I}
SVIBY 1079 - (W)
SVRGP 1071 - (WY
SVIGP 1074 - (N}
SVRGN 1069 - (i}
SVICN 1073 - (m)
FFT2D  748- (WY
FFT2B 152 (i)

ST

-

-".“h':‘\-f'-

AW




1% 0 8% Y e a0 %0 2 e . * tat 9 e’ 00 ot Bath.t gat p b 8490V 5 0% 400 8% ga"a4n g% ‘y", -atiaa?, P " Py

GAMS Index

GAMS Index

The following index lists routines in MATH/LIBRARY based on the tree-structured
GAMS classification scheme (Boisvert, Howe, and Kahaner 1984). Only the leaves
and branches of the GAMS classification scheme that contain MATH/LIBRARY
routines are included here. This index uses GAMS version 1.3, which contains some
additions to and modifications of version 1.2 (Boisvert, Howe, and Kahaner 1985).
An asterisk (*) following a subclass description indicates that this subclass and/or
its substructure have becn added or modified in version 1.3. The page number
for the documentation and the purpose of the routine appear alongside the routine
name.

The first level of the full GAMS classification scheme contains the following
major subject areas:

Arithmetic. Error Analysis
Number Theory

Elementary and Special Functions .
Linear Algebra

Interpolation

Solution of Nonlinear Equations
Optimization

Differentiation and Integration
Differential and Integral Equations
Integral Transforms
Approximation

Statistics. Probability

Simulation. Stochastic Modeling
Data Handling

Symbolic Computation
Computational Geometry
Graphics

Service Routines

Software Development Tools

PHOVOZZFRETEROPIHUOW >

There are seven levels in the classification scheme. Classes in the first level are
identified by a capital letter as is given above. Subclasses are identified by alter-
nating letter-and-number combinations. A single letter (a-z) is used within the
odd-numbered levels. A number (1-26) is used within the even-numbered levels.

References

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1984). Guide to Avail-
able Mathematical Software, U.S. Department of Commerce. National Bureau
of Standards. Center for Applied Mathematics. Washington. D.C.

Boisvert. Ronald F., Sally E. Howe. and David K. Kahaner (1985), GAMS: A frame-
work for the management of scientific software, ACM Transactions on Mathe-
matical Software, 11. 313-355.

IMSL. Inc. MATH/LIBRARY
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Alphabetical Index of Routines
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Note: Routines marked with an asterisk (*) are not user callable, but the names
are reserved. See 'Reserved Names' in the Reference Material for additional details.

A ACBCB
ACHAR
AMACH
ARBRB

B BCLSF
BCLSJ
BCOAH
BCODH
BCONF
BCONG
BCPOL
BLINF
BS2DR
BS2IG
BS2IN
BS2VL
BS3DR
BS3IG
BS3IN
BS3VL
BSCPP
BSDER
BSINT
BSITG
BSLS2
BSLSQ
BSNAK
BSOPK
BSVAL
BSVLS
BVPFD
BVPMS

C CADD
CAXPY
CCBCB

1002-(I1I)
1088-(11I)
1140-(I1I)
1000-(III)

876-(I11I)
882-(1II)
865-(11I)
859-(I11)
847-(11I)
853-(I1I)
872-(11I)
988-(I1I)
467- (II)
471- (1I)
446- (I1)
465- (II)
477- (11)
482- (II)
451- (ID)
475- (1I)
486- (II)
459- (II)
436- (II)
462- (II)
541- (II)
§32- (II)
440- (II)
443- (II)
457- (I1)
536- (II)
660- (II)
672- (I1I)

1027-(I1I)
1027-(111)
950-(III)

eI e T I N T T I o T I .
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CCBCG
CCGCB
CCGCG
CCoPY
CDGRD
CDOTC
CDOTU
CGBMV
CGEMV
CGERC
CGERU
CHBCB
CHBMV
CHEMV
CHER

CHER2
CHFCG
CHGRD
CHHES
CHJAC
CONST
CRBCB
CRBRB
CRBRG
CRGCG
CRGRB
CRGRG
CRRCR
CSAKM
CSEBRB
CSCAL
CSCON
CSDEC
CSDER
CSET

CSFRG
CSHER

.
\"7_-.~." S O T
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958- (I11)
956- (I1I)
946- (111)
1026- (II1I)
909-(III)
1028- (III)
1028-(111)
1147-(I1I)+*
1147-(I11) =
1147-(111)=*
1147-(I1I)=*
972- (111)
1147-(I11)=*
1147-(11I)*
1147-(I11)=*
1147-(III)*
968- (I11I)
923-(IID)
927-(111)
931-(III)
1120-(I1I)
964- (111
948-(11I)
954- (11D
960-(111)
952-(I11I)
944-(111)
962- (III)
420- (ID
970-(111)
1026- (111)
423- (II)
412- (ID
431- (ID)
1026-(I1I)
966- (II1I)
417- (ID

32
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CSINT
CSITG
CSPER
CSROT
CSROTM
CSSCAL
Csscv
CSSED
CSSMH
CSUB
CSVAL
CSVCAL
CSWAP
CTBMV
CTBSV
CTIME
CTRMV
CTRSV
CUNIT
CVCAL
CVTsI
CZADD
CZCDOoT
CZDOTA
CZDOTC
CZDOTI
CZDOTU
CZINI
CZMUL
CZSTO
CZUDOT

DACBCB
DADD
DARBRB
DASUM
DAXPY

409- (II)
434- (1D
427- (II)
1032-(II1)
1033-(IID)
1026- (111)
554- (II)
546- (II)
55(- (II)
1027-(111)
430- (II)
1027-(111)
1028- (I1I)
1147-(I1I)+
1147-(I11)=
1096-(II1)
1147-(111)+
1147-(I11)=*
1123-(III1)
1027-(111)
1095-(II1)
1147-(I1I)=*
1028-(I1I1)
1029-(I11)
1028- (II1)
1029-(I11)
1028-(II1)
1147-(111)+*
1147-(111)+
1147-(111)*
1028- (I11)

1002- (I1I)
1027-(11I)
1000- (I11)
1030-(I1ID)
1027-(I11)
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" 554 Interpolation and Approximation y

3: CSSCV / DCSSCYV (Single/Double precision)

» Purpose: Compute a smooth cubic spline approximation to noisy
! data using cross-validation to estimate the smoothing

parameter.

Usage: CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF)

Arguments

NDATA - Number of data points. (Imput) ,
NDATA must be at least 4. '

XDATA - Array of length NDATA containing the data point !
abscigsas. (Input)
XDATA must be distinct.

FDATA - Array of length NDATA containing the data point
ordinates. (Input)

IEQUAL - A flag alerting the subroutine that the data is
equally spaced. (Input)
If NDATA is small (less than about 20) then IQUEAL should
be set to 2.
If IEQUAL is 1 then equal spacing is assumed and the

' algorithm is more efficient; otherwise, unequal spacing
for the XDATA vector is assumed.

BREAK - Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)

CSCOEF - Matrix of size 4 by NDATA containing the local
coefficients of the cubic pieces. (Qutput)

[ .

-l -

X X AT

-

e

prr

Remark Y

Automatic workspace usage is :

Ccsscv 8*NDATA units if IEQUAL is 1, or p

7*NDATA + 3=*NDATA*+2 units otherwise, or “

DCSSCV  15#NDATA units if IEQUAL is 1, or !

13*«NDATA + 6+#NDATA**2 units otherwise. )

Workspace may be explicitly provided, if desired, by use of :

C2SCV/DC2SCV. The reference is 3

CALL C2SCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF, .

WK, SDWK, IPVT) )

. The additional arguments are as follows: b
! WK - Work array of length 6+#NDATA if IEQUAL is 1 or o
; 5*NDATA+3*NDATA**2 otherwise. ;
SDWK - Work array of length NDATA to hold the smoothed data. s

IPVT - Work array of lemngth NDATA. o

)

wd

P

CSSCV/DCSSCV IMSL, Inc. MATH/LIBRARY f:’,
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3.9 Cubic Spline Smoothing 555 .

o -

Algorithm

CSSCV is designed to produce a C? cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is
a natural cubic spline with knots at all the data abscissas z = XDATA but it does
not interpolate the data (z;, f;). The smoothing spline S, is the unique C? function
which minimizes ‘

b
/ S"(z) dz
a
subject to the constraint h

N
$ Yo1S:(z) - fil* < o,
=1

- o s
L

where o is the smoothing parameter and N = NDATA. The reader should consult y
Reinsch (1967) for more information concerning smoothing splines.

The IMSL subroutine CSSMH solves the above problem when the user provides
) the smoothing parameter 0. This routine attempts to find the ‘optimal’ smoothing
parameter using the statistical technique known as cross-validation. This means
that (in a very rough sens€) one chooses the value of o so that the smoothing spline

<y

> (Se) best approximates the value of the data at z;, if it is computed using all the f
. . . . . . . 1
data ezcept the i-th; this is true for all : = 1,..., N. For more information on this -
' topic we refer the reader to Craven and Wahba (1979).
h { This routine has a switch. IEQUAL, that allows the user to take advantage of the )
| fact that the entries in XDATA are equally spaced. This switch, when it is appropriate
_ to use, can result in more efficient execution. .
( .
| Example .
\ In this example function values are computed and are contaminated by adding a h
A small ‘random’ amount. CSSCV is used to try to reproduce the original, uncontami- :
; nated data. h
)
R INTEGER  NDATA N
PARAMETER (NDATA=300) |
c *
) ‘ INTEGER I, IEQUAL, NOUT .
' REAL BREAK (NDATA) , CSCOEF (4,NDATA), CSVAL, ERROR, F, N
k) & FDATA(NDATA) , FLOAT, FVAL, RNUNF, SVAL, X, .
;. & XDATA(NDATA), XT ;
y INTRINSIC FLOAT
EXTERNAL CSSCV, CSVAL, RNSET, RNUNF, UMACH
. c
A -
: F(X) = 1.0/(.1+(3.0%(X-1.0))*=4) ;
: ¢ y
L CALL UMACH (2, NOUT) 2
f] c Set up a grid 9
DO 10 I=1, NDATA ;
» XDATA(I) = 3.0+(FLOAT(I-1)/FLOAT(NDATA-1)) ~
\. . t
:: IMSL, Inc. MATH/LIBRARY CSSCV/DCSSCV
) [
' 1
- 35 :
: 3
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556 Interpolation and Approximation

FDATA(I) = F(XDATA(I)) !
10 CONTINUE
C Introduce noise on [-.5,.5]
c Contaminate the data
CALL RNSET (1234579)
DO 20 1I=1, NDATA
FDATA(I) = FDATA(I) + 2.0«RNUNF() - 1.0

20 CONTINUE
c
C Set IEQUAL=1 for equally spaced data
IEQUAL = 3
c Smooth data
CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF)
c Print results
WRITE (NOUT,.99999)
DO 30 I=1, 10
XT = 90.0¢(FLOAT(I-1)/FLOAT(NDATA-1))
SVAL = CSVAL(XT,NDATA-1,BREAK,CSCOEF)
FVAL = F(XT)
ERROR = SVAL - FVAL
WRITE (NOUT,'(4F15.4)°’) XT., FVAL, SVAL, ERROR
30 CONTINUE
99999 FORMAT (12X, ’X', 9X, ’Function’, 7X, 'Smoothed’, 10X,
& 'Exror’) A
END
)
Output
X Function Smoothed Error
.0000 .0123 .2552 . 2429
.3010 .0514 .1062 .0547
.6020 .4690 L3121 -.1569
.9030 9.3311 8.9495 -.3817
1.2040 4.1611 4.6834 .5223
1.5050 .1863 .3833 .1970
1.8060 .0292 .1161 .0869 .
2.1070 .0082 . 0654 .0671
2.4080 .0031 .0403 .0372
2.7090 .0014 ~.2158 -.2172
References oo
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline func-
tions, Numerische Mathematik, 31, 377-403. K
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathe- .

matik, 10, 177-183.

CSSCV/DCSSCV IMSL, Inc. MATH/LIBRARY
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" 434 Interpolation and Approximation

CSITG/DCSITG  (Single/Double precision)

: Purpose: Evaluate the integral of a cubic spline.
)
b)
: Usage: CSITG(A, B, NINTV, BREAK, CSCOEF)
N
. Arguments
;: A - Lower limit of integration. (Input)
" B - Upper limit of integration. (Imput)
R NINTV - Number of polynomial pieces. (Input) f
" BREAK - Array of length NINTV+1 containing the breakpoints 4
. for the piecewise cubic representation. (Input)
o BREAK must be strictly increasing. :
y CSCOEF - Matrix of size 4 by NINTV+1 containing the local 4
o coefficients of the cubic pieces. (Ipput)
H) »
i CSITG - Value of the integral of the spline from A to B. \
(Output) -
L)
b
i: Algorithm
D)
:‘ CSITG evaluates the integral of a cubic spline over an interval. It is a special case of s
' the routine PPITG, which evaluates the integral of a piecewise polynomial. (A cubic \
. spline is a piecewise polynomial of order 4.)
\ |
Example )
J
R This example computes a cubic spline interpolant to the function r? using CSINT !
. and evaluates its integral over the intervals [0.. .5] and [0.. 2.]. Since CSINT uses the G
;: not-a-knot condition. the interpolant reproduces z2: hence the integral values are '
} 1/24 and 8/3, respectively. 3
D
, INTEGER  NDATA .
PARAMETER (NDATA=10)
c
; INTEGER I, NINTV, NOUT
iy REAL A, B, BREAK(NDATA), CSCOEF(4,NDATA), CSITG, ERROR, )
k & EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X, ;
& XDATA (NDATA)
: INTRINSIC FLOAT
v EXTERNAL  CSINT, CSITG, UMACH
c Define function and integral D
F(X) = XeX :
¥ FI(X) = XeX+X/3.0 R
) c Set up a grid .
g DO 10 I=i, NDATA
3 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
0 FDATA(I) = F(XDATA(I)) :
1‘ i
" CSITG/DCSITG IMSL, Inc  MATH/LIBRARY X
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Compute cubic spline interpolant

XDATA, FDATA, BREAK, CSCOEF)

Compute the integral of F over

{0.0,0.5)
0.0
0.5
NDATA - 1
CSITG(A,B,NINTV ,BREAK,CSCOEF)
FI(B) - FI(A)
EXACT - VALUE

Get output unit number

CALL UMACH (2, NOUT)

Print the result
(NOUT,99998) A, B, VALUE, EXACT, ERROR

Compute the integral of F over

(0.0.2.0)
= 0.0
= 2.0
= CSITG(A,B,NINTV,BREAK, CSCOEF)
= FI(B) - FI(A)
= EXACT - VALUE

Print the result
(NOUT,99999) A, B, VALUE, EXACT, ERROR

99999 FORMAT (’ On the closed interval (°, F3.1, ’,
') we have :', /, 1X, ’Computed Integral = ', F10.5, /,

1X, ’Exact Integral = ', F10.5, /.,
! = ', F10.6, /, /)

10 CONTINUE
C
(o
Cc
A
B
NINTV
VALUE
EXACT
ERROR
c
c
WRITE
c
c
A
B
VALUE
EXACT
ERROR
C
WRITE
&
&
&
c
END
Output

On the closed interval ( .0, .5) we have :

Computed Integral = .04167
Exact Integral = .04167
Error = .000000

On the closed interval ( .0,2.0) we have :
Computed Integral = 2.66669
Exact Integral = 2.66667

Error

IMSL, Inc.
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= -.000023

MATH/LIBRARY
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430 Interpolation and Approximation

CSVAL / DCSVAL (Single/Double precision)

Purpose: Evaluate a cubic spline.
Usage: CSVAL(X, NINTV, BREAK, CSCOEF)
Arguments
X - Point at which the spline is to be evaluated.

(Input)
Number of polynomial pieces. (Imput)
Array of length NINTV+1 containing the breakpoints
-for the piecewise cubic representation. (Input)
BREAK must be strictly increasing.
CSCOEF - Matrix of size 4 by NINTV+1 containing the local
coefficients of the cubic pieces. (Input)
CSVAL - Value of the polynomial at X. (Output)

NINTV
BREAK

Algorithm

CSVAL evaluates a cubic spline at a given point. It is a special case of the routine
PPDER, which evaluates the derivative of a piecewise polynomial. (The value of
a piecewise polynomial is its zero-th derivative and a cubic spline is a piecewise
polynomial of order 4.) PPDER is based on the routine PPVALU in de Boor (1978,
page 89).

Example

For an example of the use of CSVAL, see IMSL routine CSINT.

Reference

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

CSVAL/DCSVAL IMSL, Inc. MATH/LIBRARY
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ot

§" CSSMH / DCSSMH (Single/Double precision)

. Purpose: Compute a smooth cubic spline approximation to

p noisy data.

l.(

K]

k1 Usage: CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK,

i CSCOEF)

4

Y Arguments

ﬁ. NDATA - Number of data points. (Imput)

B NDATA must be at least 2.

' XDATA - Array of length NDATA containing the data point

abscissas. (Imput)
" XDATA must be distinct.
f; FDATA - Array of length NDATA containing the data point
o ordinates. (Input)

]
K WEIGHT - Array of length NDATA containing estimates of the
- standard deviations of FDATA. (Input)
o All elements of WEIGHT must be positive.
r' SMPAR - A nonnegative number which controls the smoothing.
%} (Input)
N The spline function S returned is such that
the sum from I=1 to NDATA of
Y ( (S(XDATA(I))-FDATA(I))/WEIGHT(I) )=*»2
k is less than or equal to SMPAR. It is recommended that
N SMPAR lie in the confidence interval of this sum, i.e.,
Y NDATA-SQRT(2+NDATA) .LE. SMPAR .LE. NDATA+SQRT(2+NDATA).

BREAK - Array of length NDATA containing the breakpoints
for the piecewise cubic representation. (Output)

"

{ CSCOEF - Matrix of size 4 by NDATA containing the local

3 coefficients of the cubic pieces. (Output)

N

" Remarks

o 1. Automatic workspace usage is

% CSSMH 9«NDATA+5 units, or

) DCSSMH  17+NDATA+10 units.

{ Workspace may be explicitly provided, if desired, by use of
C2SMH/DC2SMH. The reference is ’

s CALL C2SMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK,

L CSCOEF, WK, IWK)

" The additional arguments are as follows:

! WK - Work array of length 8*NDATA+S.

3 IwK - Work array of length NDATA.

:

5 CSSMH/DCSSMH IMSL, Inc. MATH/LIBRARY
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3.9 Cubic Spline Smoothing 551 ‘

2. Informational error

Type Code
3 1 The maximum number of iterations has been reached. The

best approximation is returmed.

3. The cubic spline can be evaluated using CSVAL; its derivative can
. be evaluated using CSDER.

>
- 1

Algorithm

CSSMH is designed to produce a C? cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is
a natural cubic spline with knots at all the data abscissas z = XDATA, but it does

not interpolate the data (z;, f;). The smoothing spline S is the unique C? function §
which minimizes R :'
[ s"@) ez A
a )
subject to the constraint h
f: (3:) f i : o
i=1 W : '
( where w = WEIGHT, o = SMPAR is the smoothing parameter, and N = NDATA. ht
Recommended values for o depend on the weights w. If an estimate for the >
standard deviation of the error in the value f; is available, then w; should be set )
to this value and the smoothing parameter ¢ should be chosen in the confidence ::‘
interval corresponding to the left side of the above inequality. That is, -
-V2N<oc <N+ V2N 3
CSSMH is based on an algorithm of Reinsch (1967). This algorithm is also dis- .
cussed in de Boor (1978, pages 235-243). K
ﬂ
Example 4
In this example, function values are contaminated by adding a small ‘random’
amount to the correct values. CSSMH is used to approximate the original, uncontam- ;
inated data. .
INTEGER NDATA ﬂ
PARAMETER  (NDATA=300) ' \
c Lt
INTEGER I, NOUT
REAL BREAK(NDATA) , CSCOEF (4,NDATA), CSVAL, ERROR, F, !
& FDATA(NDATA), FLOAT, FVAL, RNUNF, SDEV, SMPAR, SQRT,
& SVAL, WEIGHT(NDATA), X, XDATA(NDATA), XT )

INTRINSIC FLOAT, SQRT
EXTERNAL  CSSMH, CSVAL, RNSET, RNUNF, SSET, UMACH y

IMSL. Inc.  MATH/LIBRARY CSSMH/DCSSMH
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B
o c
F(X) = 1.0/(.14(3.0%(X-1.0))*=4)
iy c Set up a grid
;',‘. DO 10 I=1, NDATA
9‘: XDATA(I) = 3.0+ (FLOAT(I-1) /FLOAT (NDATA-1))
o FDATA(I) = F(XDATA(I))
9,' 10 CONTINUE
c Set the random number seed
0 CALL RNSET (1234579)
- c Contaminate the data
;‘. DO 20 I=1, NDATA
K FDATA(I) = FDATA(I) + 2.0+RNUNF() - 1.0
K 20 CONTINUE
* c Set the WEIGHT vector
" SDEV = 1.0/SQRT(3.0)
0 CALL SSET (NDATA, SDEV. WEIGHT. 1)
KX SMPAR = NDATA
) c Smooth the data
: CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT. SMPAR, BREAK, CSCOEF)
' c Get output unit number
o CALL UMACH (2, NOUT)
A C Write heading
Y WRITE (NOUT,99999)
::: C Print 10 values of the function.
e DO 30 I=1, 10
- XT = 90.0%(FLOAT(I~1)/FLOAT(NDATA-1))
KN c Evaluate the spline
N SVAL = CSVAL(XT,NDATA-1,BREAK,CSCOEF)
0, FVAL = F(XT)
I ERROR = SVAL - FVAL
,‘l. WRITE (NOUT,'(4F15.4)') XT, FVAL, SVAL, ERROR
‘ 30 CONTINUE
¥ c
;. 99999 FORMAT (12X, ‘X', 9X, 'Function’, T7X, 'Smoothed’, 10X,
ol & *Error’)
Ny END
o
v Output
.
N X Function Smoothed Exror
- .0000 .0123 1119 .0995
.3010 .0514 .0646 .0131
: .6020 .4690 .2972 ' -.1718
.9030 9.3311 8.7022 -.6290
! 1.2040 4.1611 4.7888 .6277
: 1.5050 .1863 27117 .0855
' 1.8060 .0292 .1408 .1116
v 2.1070 .0082 .0826 .0743
:! 2.4080 .0031 .0076 .0044
‘1
1
: CSSMH/DCSSMH IMSL, Inc. MATH/LIBRARY
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84 Regression

RLINE/DRLINE (Single/Double precision)

Purpose: Fit a line to a set of data points using least squares.
Usage: CALL RLINE (NOBS, XDATA, YDATA, BO, Bi, STAT)
s Arguments
NOBS - Number of observations. (Input)
XDATA - Vector of length NOBS containing the x values. (Imput)
YDATA -~ Vector of length NOBS containing the y values. (Input)
BO - Estimated intercept of the fitted line. (Output)
B1 - Estimated slope of the fitted line. (Dutput)
STAT - Vector of length 12 containing the statistics described
below. (Cutput)
I STAT(I)
1 Mean of XDATA *
2 Mean of YDATA
3 Sample variance of XDATA
4 Sample variance of YDATA
6 Correlation
6 Estimated standard error of BO
7 Estimated standard error of 31
8 Degrees of freedom for regression
9 Sum of squares for regression
10 Degrees of freedom for error
11 Sum of squares for error
12 Number of (x,y) points containing NaN
(not a number) as either the x or y value
Remark
Informational error
Type Code

4 1 Each (x,y) point contains NaN (not a number). There
are no valid data.

Keyword: Simple linear regression

Algorithm

Subroutine RLINE fits a line to a set of (z,y) data points using the method of least
squares. Draper and Smith (1981, pages 1-69) discuss the method. The fitted model

m LY a
g=ﬂ0+ﬁlzu

RLINE/DRLINE IMSL, Inc. STAT/LIBRARY
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2.1 Simple Linear Regression 85 by ’
N
where (o (stored in BO) is the estimated intercept and §; (stored in B1) is the o
estimated slope. In addition to the fit, RLINE produces some summary statistics, -
including the means, sample variances, correlation, and the error (residual) sum of .
squares. The estimated standard errors of 8¢ and 5, are computed under the simple h
linear regression model. The errors in the model are assumed to be uncorrelated :f:
and with constant variance. ) ',:u
If the z values are all equal, the model is degenerate. In this case, RLINE sets j3; '
to zero and 3y to the mean of the y values. ‘ L
Ky
Example y
This example fits a line to a set of data discussed by Draper and Smith (1981, Table \’
1.1, pages 9-33). The response y is the amount of steam used per month (in pounds) ¢
and the independent variable z is the average atmospheric temperature (in degrees 7y
Fahrenheit). R
-
c SPECIFICATIONS FOR PARAMETERS :
INTEGER  NOBS P
PARAMETER (NOBS=25) z
c A
INTEGER  NOUT e
REAL BO, B1, STAT(12), XDATA(NOBS), YDATA(NOBS) 9,
CHARACTER CLABEL(13)+15, RLABEL(1)*4 :g
ra EXTERNAL RLINE, UMACH, WRRRL "
\ ¢ 4
DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7, -
& 57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0, :ﬂ
& 74.5, 72.1, 58.1, 44.6, 33.4, 28.6/ ~
DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5, :-
& 7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09, hﬁ
& 8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
DATA RLABEL/’NONE’/, CLABEL/' ', 'Mean of X', 'Mean of Y’, ,:
& 'Variance X', ’'Variance Y', 'Corr.’, ;: A
& 'Std. Err. BO', 'Std. Err. B1’, 'DF Reg.’. e
& 'SS Reg.', 'DF Error’, 'SS Error’, 'Pts. with NaN'/ e
c Rt
CALL RLINE (NOBS, XDATA, YDATA, BO, B1, STAT) !‘
c 2
CALL UMACH (2, NOUT) T
WRITE (NOUT,99999) BO, Bi A
99999 FORMAT (* BO = ', F7.2, ' Bl = ' F9.5) R
CALL WRRRL ('%/STAT’, 1, 12, STAT, 1., 0, *(12w10.4)°’, RLABEL, bf‘
& CLABEL) )
c 2o
END f
\ i
Y
Lo
]
S
2
IMSL, Inc. STAT/LIBRARY RLINE/DRLINE :js
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88 Regression 3

'

Output X

) BO= 13.62 Bi= -.07983 o

]

p '
STAT "

R Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. BO \
52.6 9.424 298.1 2.659 -.8452 .6815 )
‘ Std. Err. Bi DF Reg. SS Reg.  DF Error  SS Error Pts. with NaN 1
.01052 1 45.59 23 18.22 0 i

.
N

Reference

3

Draper, N. R., and H. Smith (1981), Applied Regression Analysis, second edition. i

John Wiley & Sons, New York. ;:

o
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fa
>'I
::: RLAV/DRLAV  (Single/Double precision)
b Purpose: Fit a multiple linear regression model using the least
5{ absolute values criterion.
:5 Usage: CALL RLAV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND,
he. IRSP, B, IRANK, SAE, ITER, NRMISS)
i
;:: Arguments
U
?g NOBS - Number of observations. (Imput)
e NCOL - Number of columns in X. (Input)
. X - NOBS by NCOL matrix containing the data. (Input)
O LDX - Leading dimension of X exactly as specified in the
26 dimension statement in the calling program. (Input)
kﬁ INTCEP - Intercept option. (Input)
o, INTCEP Action

0 An intercept is not in the model.

;ﬁ 1 An intercept is in the model.
oy IIND - Independent variable option. (Input)
o The absolute value of IIND is the number of independent
v 2 (explanatory) variables. The sign of IIND specifies the
y following options:
': IIND Meaning
o .LT. 0 The data for the -IIND independent variables are
;‘f given in the firat ~IIND columns of X.

Y .GT. 0 The data for the IIND independent variables are
W 7 in the columns of X whose column numbers are

oA given by the elements of INDIND.

" .EQ. O There are no independent variables.

"y The regressors are the constant regressor (if INTCEP = 1)

“: and the independent variables.

O, INDIND - Index vector of length IIND containing the column numbers
of X that are the independent (explanatory) variables.

~ (Input, if IIND is positive)
o If IIND is negative, INDIND is not referenced and can be
- a vector of length one.
e IRSP - Column number IRSP of X contains the data for the
_ response (dependent) variable. (Input)
A B - Vector of length INTCEP + IABS(IIND) containing a LAV
: solution for the regression coefficients. (Output)
y If INTCEP = 1, B(1) contains the intercept estimate.
: B(INTCEP+I) contains the coefficient estimate for the

ATy

I-th independent variable.
IRANK - Rank of the matrix of regressors. (Output)
RLAV/DRLAV IMSL, Inc. STAT/LIBRARY
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2.6 Alternatives to Least Squares 249 ,

If IRANK is less than INTCEP + IABS(IIND), linear
dependence of the regressors was declared.

SAE - Sum of the absolute values of the errors. (Output)

ITER - Number of iterations performed. (Output)

NRMISS - Number of rows of data containing NaN (not a number)
for the dependent or independent variables. (Output)
If a row of data contains NaN for any of these variables,
that row is excluded from the computations.

Remarks

1. Automatic workspace usage is

RLAV NOBS*(IABS(IIND)+5)+2+IABS(IIND)+NOBS+4, or

DRLAV 2+NOBS=* (IABS(IIND)+5)+4*IABS(IIND)+NOBS+8
Workspace may be explicitly provided, if desired, by use of
R2AV/DR2AV. The reference is

CALL R2AV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND,

- IRSP, B, IRANK, SAE, ITER, NRMISS, IWK, WK)

The additional arguments are as follows:
IWK - Work vector of length NOBS
WK - Work vector of length NOBS*(IABS(IIND)+5)+2+IABS(IIND)+4

2. Informational error
Type Code
3 1 The solution may not be unique.

Keywords: L1 criterion; MSAE; LSAE; MAD; LAV

Algorithm

RLAV computes estimates of the regression coefficients in a multiple linear regression
model. The criterion satisfied is the minimization of the sum of the absolute values
of the deviations of the observed response y; from the fitted response g; for a set on
n observations. Under this criterion, known as the L; or LAV (least absolute value)
criterion, the regression coefficient estimates minimize 7', |yi — %l

The estimation problem can be posed as a linear programming problem. The
special nature of the problem, however, allows for considerable gains in efficiency
by the modification of the usual simplex algorithm for linear programming. These
modifications are described in detail by Barrodale and Roberts (1973).

In many cases, the algorithm can be made faster by computing a least squares
solution prior to the invocation of RLAV. This is particularly useful when a least
squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.

IMSL, Inc. STAT/LIBRARY RLAV/DRLAV
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250 Regression

2. Fit the residuals from step 1 on the regressor variables in the model using
RLAV.

3. Add the two estimated regression coefficient vectors from steps 1 and 2. The
result is an L, solution.

When multiple solutions exist for a given problem, subroutine RLAV may yield
different estimates of the regression coefficients on different computers; however,
the sum of the absolute values of the residuals should be the same (within rounding .
differences). The informational error indicating nonunique solutions may result from
rounding accumulation. Conversely, because of rounding the error may fail to result,
even when the problem does have multiple solutions.

-

T

Example
A straight line fit to a data set is computed under the LAV criterion.

c SPECIFICATIONS FOR PARAMETERS

INTEGER LDX, NCOEF, NCOL, NOBS
PARAMETER (NCOEF=2, NCOL=2, NOBS=8, LDX=NOBS)

c
INTEGER IIND, INDIND(1), INTCEP, IRANK, IRSP, ITER, NOUT,
& NRMISS
REAL B(NCOEF), SAE. X(LDX,NCOL)
CHARACTER CLABEL(1)=4, RLABEL(1)%4
EXTERNAL  RLAV, UMACH, WRRRL
c
DATA (X(1.,J),J=1,NCOL) /1.0, 1.0/
DATA (X(2,J),J=1,NCOL) /4.0, 5.0/
DATA (X(3,J),J=1,NCOL) /2.0, 0.0/
DATA (X(4,J),J=1,NCOL) /2.0, 2.0/
DATA (X(5,J),J=1,NCOL) /3.0, 1.5/
DATA (X(6,J),J=1,NCOL) /3.0, 2.5/
DATA (X(7.J),J=1,NCOL) /4.0, 2.0/
DATA (X(8,J),J=1,NCOL) /5.0, 3.0/
c
INTCEP = 1
IIND = -1
IRSP =2
c
CALL RLAV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, B,
& IRANK, SAE, ITER, NRMISS)
c
CALL UMACH (2, NOUT)
RLABEL(1) = 'B =’
CLABEL(1) = 'NONE’
CALL WRRRL (’ ', 1, NCOEF, B, 1, O, '(F6.2)', RLABEL, CLABEL)
WRITE (NOUT,*) °‘IRANK = ', IRANK
WRITE (NOUT,) 'SAE = ', SAE
WRITE (NOUT,») 'ITER = *, ITER
WRITE (NOUT,=) 'NRMISS = °*, NRMISS
RLAV/DRLAV IMSL, Inc. STAT/LIBRARY
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2.6 Alternatives to Least Squares 251

T

Output

B = .50 .50
’ IRANK = 2

SAE = 6.

ITER = 2

NRMISS = O

e R
K55 S

References
bt

Barrodale, 1., and F. D. K. Roberts (1973), An improved algorithm for discrete L,
approximation, SIAM Journal on Numerical Analysis, 10, 839-848.

Barrodale, 1., and F. D. K. Roberts (1974), Solution of an overdetermined system
of equations in the [; norm, Communications of 'the ACM, 17, 319-320.
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